Instrument Pilot Airplane
Flight Training Syllabus
AC 61-27C \& FAA-S-8081-4B
OBJECTIVES 3
COMPLETION STANDARDS 3
TO THE CFI 3
TO THE STUDENT 3
COPYRIGHT NOTICE 3
GROUND INSTRUCTION (FAR 61.65)(B)(1-4) 5
FLIGHT INSTRUCTION (FAR 61.65)(c)(1-5) 5
FLIGHT EXPERIENCE: (FAR 61.65)(E)(1-3) 6
STAGE 7
FUNDAMENTALS OF INSTRUMENT FLIGHT 7
Lesson \#1. ORIENTATION FLIGHT AND REVIEW OF THE BASICS 7
Lesson \#2. INSTRUMENT COCKPIT CHECK \& PITCH CONTROL 8
Lesson \#3. BANK CONTROL 10
Lesson \#4. POWER CONTROL AND TRIM. 11
Lesson \#5. CONSTANT AIRSPEED. CLIMBS AND DESCENTS 13
Lesson \#6. TURNS AND HDG. INDICATOR TURNS 15
INSTRUMENT TAKEOFF 16
Lesson \#8. RATE CLIMBS AND DESCENTS 16
Lesson \#9. CHANGE OF AIRSPEED. IN TURNS 17
Lesson \#10. CLIMBS AND DESCENTS TO
PREDETERMINED ALTITUDES AND HEADINGS. 18
Lesson \#11. VERTICAL S, S1 \& S2 19
Lesson \#12. MAGNETIC COMPASS 20
Lesson \#13. TIMED TURNS 21
Lesson \#14. RECOVERY FROM UNUSUAL FLIGHT ATTITUDES 22
Lesson \#15. PATTERN "A" 24
Lesson \#16. PATTERN "B" 26
STAGE II 27
INSTRUMENT APPROACHES \& HOLDING 27
Lesson \#17. INTERCEPTING AND TRACKING VOR/VORTAC RADIALS 27
Lesson \#18. INTERCEPTING AND TRACKING DME ARCS28Lesson \#19. INTERCEPTING AND TRACKING NDBBEARINGS29
Lesson \#20. INTERCEPTING AND TRACKING THE ILS
LOCALIZER 30
Lesson \#21. MISSED APPROACH PROCEDURES 31
Lesson \#22. VOR HOLDING PROCEDURES 32
Lesson \#23. CIRCLING APPROACH PROCEDURE 33
Lesson \#24. LANDING FROM A STRAIGHT-IN OR CIRCLING APPROACH PROCEDURE. 34
Lesson \#25. NO-GYRO RADAR VECTORING AND APPROACH. 35
Lesson \#26. VOR/VORTAC INSTRUMENT APPROACH PROCEDURE 36
Lesson \#27. NDB HOLDING PROCEDURES 37
Lesson \#28. NDB INSTRUMENT APPROACH PROCEDURE38Lesson \#29. ILS/MLS INSTRUMENT APPROACHPROCEDURE39
Lesson \#30. INTERSECTION HOLDING PROCEDURES 40
STAGE III 41
IFR CROSS-COUNTRY 41
Lesson \#31. IFR SHORT CROSS-COUNTRY 41
Lesson \#32. PAR APPROACH (Combine with Cross-Country)42Lesson \#33. IFR CROSS-COUNTRY43
Lesson \#34. IFR LONG CROSS-COUNTRY 44
Lesson \#35. EMERGENCY PROCEDURES 45
STAGE IV 46
REVIEW LESSONS 46
EXPANDED BRIEFING I-1 49
Preparation for Instrument Approaches 49
EXPANDED BRIEFING I-2 50
Instrument Procedures. 50
EXPANDED BRIEFING I-3 51
Air Traffic IFR Procedures 51
EXPANDED BRIEFING I-4 52
Instrument Cross-Country \& Emergency Procedures 52

OBJECTIVES training Syllabus provides the student pilot with a detailed summary of specific knowledge and skill required by the FAA for certification for an Instrument Rating in Airplanes.

COMPLETION STANDARDS: You show by written record, and will demonstrate through oral and by practical tests, that you meet the required aeronautical skill, knowledge, experience, and performance standards to be recommended to a designated pilot examiner for an Instrument Arplane Rating.

TO THE CFI:: This training system contains the specific task requirements of the FAA-S-8081-4B Instrument Rating Practical Test Standards, combined with the Instrument Flight Instructor's lesson plan found in AC61-27C, Instrument Flying Handbook. This training system helps the instructor ensure that all specific requirements of FAR 61.65 (b)(1-4) and FAR 61.65 (c)(1-5) are met. This will create a high degree of structure by providing an outline for study, a practical checklist, and a record of training. Review the topics by reading the appropriate reference materials, or by talking with your instructor. This document follows the "Building Block" approach to training as specified in AC 60-14 Aviation Instructor's Handbook, which means that elements of any flight lesson that are not accomplished during the flight should be completed as soon as possible, and each lesson can be repeated as often as necessary, but no element of the next stage should be introduced until all the elements of the previous stage have been finished.

TO THE STUDENT: During the preflight ground instruction lessons, your flight instructor should: 1- Explain the purpose of each flight maneuver, or pilot operation; 2- Give you an accurate, comprehensive description of the maneuver or operation, including the objectives and completion standards; 3-

Use instructional aids, as appropriate; and 4-Describe the correction for common errors you are likely to make while learning or performing the maneuver or operation.

COPYRIGHT NOTICE

All words, pictorials, graphics and compiled information are protected from unauthorized use by US copyright laws.
Protected material may not be copied by any means without prior written consent of Thomas W. Gorski

STAGE I

LESSONS 1-16
ATTITUDE INSTRUMENT FLYING
OBJECTIVES: These lessons involve instrument scan, instrument interpretation, and positive aircraft control. Although you learn these skills separately, and in a deliberate sequence, the ojective of this stage will be your ability to integrate these skills into unified, smooth, positive control responses to maintain any prescribed flight path.

COMPLETION STANDARDS:

You will demonstrate positive aircraft control, solely by reference to instruments, in a variety of circumstances. You will be able to maintain specified altitude within 100 feet, assigned heading within 10 degrees, and

STAGE II
LESSONS 17-30
STAGE II INSTRUMENT APPROACHES, HOLDING PATTERNS \& REVIEW
OBJECTIVES: These lessons are to develop the skills necessary for performing instrument approaches, and are repeated as necessary to gain proficiency.

STAGE III
LESSONS 31-35
IFR CROSS-COUNTRY
These lessons usually require 4 or 5 flights, and involve CrossCountry IFR under a variety of circumstances, including a PAR approach, if available.

STAGE IV

PROCEDURES REVIEW LESSONS
These are review lessons which should be repeated as often as necessary.

QUIZZES

These are written quizzes, given at the completion of each stage.

ENDORSEMENTS

These endorsements are to be affixed to the student's logbook, and signed by the instructor, after successful completion of this course of instruction.

INSTRUMENT RATING TRAINING REQUIREMENTS
(Excerpt from FAR Part 61.65)

GROUND INSTRUCTION (FAR 61.65)(b)(1-4)

You are to have received ground instruction, or have logged home study in at least the following areas of aeronautical knowledge:
(1) The regulations of FAR 61.65 that apply to flight under IFR conditions, The Airman's Information Manual, and the IFR air traffic system and procedures;
(2) Dead reckoning appropriate to IFR navigation, IFR navigation by radio aids using the VOR, ADF, and ILS systems, and the use of IFR charts and instrument approach plates;
(3) The procurement and use of aviation weather reports and forecasts, and the elements of forecasting weather trends on the basis of that information and personal observation of weather conditions; and
(4) The safe and efficient operation of airplanes under instrument weather conditions.

FLIGHT INSTRUCTION (FAR 61.65)(c)(1-5)
You must present a logbook record certified by an authorized flight instructor showing that you have received instrument flight instruction in an airplane in the following pilot operations, and have been found competent in each of them:
(1) Control and accurate maneuvering of an airplane solely by reference to instruments.
(2) IFR navigation by the use of the VOR and ADF systems, including compliance with air traffic control instructions and procedures.
(3) Instrument approaches to published minimums using the VOR, ADF and ILS systems.
(4) Cross-Country flying in simulated or actual IFR conditions, on Federal airways or as routed by ATC, including one such trip of at least 250 nautical miles, including VOR, ADF and ILS approaches at different airports.
(5) Simulated emergencies, including the recovery from unusual attitudes, equipment or instrument malfunctions, loss of communications, missed approach procedures, and engine-out emergencies if a multiengine airplane is used.

FLIGHT EXPERIENCE: (FAR 61.65)(e)(1-3)
To obtain a Instrument Rating, you must have:
(1) At least 125 hours total flight time, of which at least 50 hours are as pilot in command in Cross-Country flight (at least 50 nm flights);
(2) 40 hours of simulated or actual instrument time, of which no more than 20 hours instruction in a simulator.
(3) 15 hours of instrument flight instruction are required, including at least 5 hours in an airplane.

Start
Total \qquad Date_ /
STAGE I
FUNDAMENTALS OF INSTRUMENT FLIGHT

Lesson \#1. ORIENTATION FLIGHT AND REVIEW OF THE BASICS

(1) Preflight Discussion \& Review Steep (Constant $\overline{\text { Altitude) Turns, MCA, Stalls (VR \& IR) and Recoveries from }}$ unusual flight attitudes.
(2) Airplane Systems Related To IFR Operations, Instrument Cockpit Check

(3) Aircraft Flight Instruments And Navigation

 $\overline{\text { Equipment }}$(4) Straight And Level Flight
\qquad (5) Attitude Indicator Errors
\qquad (6) Review MCA
\qquad (7) Review Stalls (VR) \& (IR)
\qquad (8) Review Unusual Attitude Recoveries
\qquad (9) Review Constant Airspeed Climbs \& Descents
\qquad (10) Perform Steep Turns. Enter A Turn Of More Than A Standard Rate (Altimeter is primary for pitch. Maintain altitude. Airspeed is primary for power. Add power when airspeed indicator shows a need for it. Cross-check attitude indicator, altimeter, and vertical speed indicator for pitch control.

Refer to attitude indicator when making pitch corrections, taking precession error into consideration.)
\qquad (11) Perform Steep Turns, Partial Panel (Use turn needle to maintain a constant rate of turn. Control pitch by reference to altimeter/VSI combination.)
(12) Recovery Should Be Smooth With A Normal $\overline{\text { Rate Of Roll (Since vertical lift increases, pitch and power }}$ should be reduced as required to maintain altitude and airspeed.)
\qquad (13) Practice Steep Turns With All Available Instruments
\qquad (14) Without Attitude And HDG. Indicator
\qquad (15) Postflight
\qquad (16) Next Lesson Preview

Start
N
End
Total \qquad Date_ 1
Lesson \#2. INSTRUMENT COCKPIT CHECK \& PITCH CONTROL
\qquad (1) Preflight Discussion
\qquad (2) Preflight Preparation
\qquad (3) Obtaining Weather
\qquad (4) Visual Inspection
\qquad (5) Airplane Systems Related To IFR Operations
\qquad (6) Cockpit Management

Equipment

\qquad
\qquad
\qquad (10) Attitude Indicator Errors
(11) Comparison of Instrument Indication \& Pitch

Attitude

(12) Maintain Level Flight With Attitude Indicator, Return To Level Flight (After moderate climbs \& descents)
\qquad (13) Trim
(14) Change Pitch Attitude And Show Altimeter

Indication
(8) Instrument Cockpit Check
(9) Straight And Level Flight
(7) Aircraft Flight Instruments And Navigation
(29) Point Out That Airspeed Remains Constant At Constant Power When Altitude Is Constant
(30) Make Small Pitch Changes, And Point Out Slow Changes In Airspeed
(31) Make Extreme Pitch Changes, And Point Out Fast Changes In Airspeed
(32) Practice Holding Constant Airspeed In Level Flight (With Constant Power) By Use Of Airspeed Indicator Alone
(33) Practice Constant Airspeed With All Available Instruments
(34) Now Without Attitude Indicator (Instructor Should $\overline{\text { Aid Student In Rudder And Bank Control.) }}$

Start
Total \qquad
N
Date_1
Lesson \#3. BANK CONTROL
\qquad (1) Preflight Discussion
(2) Roll From One Bank To Another Observing Banking Scale To Indicate Degree Of Bank

\qquad
 (3) Precession Of Horizon Bar After A Steep 180

Turn
(4) Practice Bank Control Using Attitude Indicator Only Then Using Heading And Attitude Indicator
(5) Heading Indicator Corrections (Banks not to exceed number of degrees turned. (Ex. if heading error is 10 degrees, do not exceed a 10 degree bank when correcting.)
(6) Include Heading Indicator In Cross-Check To Maintain Straight-And Level Flight. Practice Straight Flight With Heading Indicator Alone, Then Include Attitude Indicator __ (7) Practice Straight Flight With All Pitch Instruments
(8) Turn Needle Shows Rate Of Turn Regardless Of Angle Of Bank (As a demonstration, fly along some straight ground reference, then establish a banked attitude, using rudder to prevent any yaw or turn. Point out that turn needle indicates straight flight and not banked attitude of aircraft.)
(9) Maintain Straight And Level Flight (Without Heading Indicator) Use Turn Needle And Magnetic Compass Only
(10) Demonstrate A 2 Degree Bank Showing Turn Needle Deflection And Heading Indicator Changes
(11) Make Standard Rate Turns, Slipping And Skidding, (point out that ball on low side of center indicates that wing is low relative to position of turn needle.)
(12) Practice Bank Control Using Turn And Slip Indicator (VR \& IR)
(13) Practice Maintaining Straight And Level Flight With All Available Pitch And Bank Instruments
_(14) Postflight Procedures
(15) Next Lesson Preview

Start
End
Total \qquad N

Date_ I
Lesson \#4. POWER CONTROL AND TRIM
\qquad (1) Preflight Discussion
___ (2) Ground Phase
(3) Practice Maintaining Altitude And Trimming Off Pressure
(4) Increase Power, Maintaining Straight \& Level Flight
(5) Decrease Power, Maintaining Straight \& Level Flight
(6) Use Aileron And/Or Rudder Trim, With Power Changes (If aircraft is so equipped.)
(7) Determine Parameters For MAP, RPM, PITCH SETTING, AIRSPEED, \& VSI (Use power chart on next page.)
(8) Lead the Level-offs by 10 percent of the Vertical Speed.
\qquad (9) Postflight
(10) Next Lesson Preview
PITCH AIRSPEED
CLIMB
CRUISE
CRUISE
DESCENT
APPROACH \&
HOLDING
APPROACH
DESCENT

NON-PRECISION.

DESCENT
Start__

End
Total_
Lesson \#5. CONSTANT AIRSPEED. CLIMBS AND
DESCENTS

\qquad (1) Preflight Discussion
\qquad (2) Ground Phase
\qquad (3) Decrease Airspeed. From Cruise To Approaching And Holding
(4) Increase Airspeed. From Approaching To Cruise Maintaining Altitude \& HDG. (Pitch must be changed, note attitude indicator acceleration and deceleration errors.)
(5) Decrease Airspeed. From Cruise To Approach Maintaining Altitude \& HDG.
\qquad (6) Use Airspeed. Indicator For Primary Power

Control

(7) Practice Changing Airspeed. In Straight \& Level $\overline{F l i g h t ~ W i t h o u t ~ H D G . ~ I n d i c a t o r, ~ T h e n ~ W i t h o u t ~ A t t i t u d e ~ A n d ~ H D G . ~}$ Indicators

Airspeed.

(8) Enter Constant Airspeed. Climb From Cruise
(9) Demonstrate Use Of VSI As An Aid In Maintaining Airspeed. (By adjusting pitch attitude on attitude indicator to change VSI 200 FPM to gain or loose 10 Kts .)
(10) Level-Off From Climbs At Cruise Airspeed. (Lead altitude by 10 percent VSI shown, i.e., for 500 FPM, use 50 foot lead. (altimeter is primary for pitch as level-off is started.) Leave
power at climbing power until airspeed approaches normal cruise airspeed, adjusting pitch as necessary to maintain altitude. Emphasize proper use of trim.)
(11) Enter Climbs From Normal Cruise Airspeed. And Level Off At Normal Cruise Airspeed. With All Available Instruments, then Without Attitude And HDG. Indicators.
(12) Reduce To Climb Airspeed, And Enter A Climb From Climb Airspeed. (As power is increased, airspeed is primary for pitch. Use relationship between airspeed and vertical speed for pitch control.)
(13) Level-Off From Climbs At Climb Airspeed. With All Available Instruments (Lead altitude by 10 percent of VSI. As level-off is started, altimeter becomes primary pitch.)
(14) Practice Entering Climbs From Climb Airspeed. And Level-Off At Climb Airspeed. (With all available instruments, then Without Attitude And HDG. Indicators.)
(15) Enter A Descent By Reducing To Descent Power, Maintaining Altitude Until Airspeed. Approaches Descending Airspeed. (Airspeed. is primary for pitch.)
(16) Demonstrate Use Of VSI As An Aid In Maintaining Desired Airspeed. (By adjusting pitch to change VSI 20 FPM to gain or lose 5 Kts . airspeed.)
(17) Level-Off From Descents At Cruise Airspeed. $\overline{\text { (VSI is primary for pitch until normal lead for level-off is reached, }}$ then altimeter is primary for pitch.)
(18) Level-Off From Descents At Descent Airspeed. (Approx. 50' above desired altitude, advance power to hold airspeed constant. Simultaneously adjust pitch attitude to maintain airspeed. As level-off is started, altimeter is primary for pitch, and airspeed becomes primary for power.)
(19) Practice Level-Offs From Descents At Cruising And Descending Airspeed. With Full \& Partial Panel
(20) Postflight Procedures
(21) Next Lesson Preview

Start___	N
End	Date_ $\quad 1$
Total	

Lesson \#6. TURNS AND HDG. INDICATOR TURNS
\qquad (1) Preflight Discussion \qquad (2) Ground Phase
\qquad (3) Enter A Level Flight Turn, And Maintain Constant Airspeed. (As turn is established, attitude indicator is primary for bank. When approximate desired bank is reached, turn needle is primary for bank. altimeter is primary for pitch, airspeed indicator is primary for power.)
\qquad (4) Pitch Must Be Changed To Maintain Constant Altitude
(5) If Necessary, Hold Slight Aileron And Rudder Pressure Opposite Direction Of Turn To Maintain Desired Bank (Maintain a constant bank angle.)
(6) Adjust Power As Necessary To Maintain A Constant Airspeed.
\qquad (7) Recover To Straight And Level Flight (Explain that roll-out is accomplished by reference to attitude indicator. When normal lead for roll-out is reached, heading indicator if available, becomes primary for bank. Adjust pitch attitude and power as necessary to maintain desired altitude and airspeed.)
(8) Enter A Turn With Rudder Alone (Show resulting $\overline{\text { skid, and effect on airspeed. aircraft is turning faster than bank }}$ indicates.)
\qquad (9) Enter A Turn With Aileron Alone (Show yaw caused by aileron drag, and how coordinated use of rudder and ailerons eliminates its effect.
(10) Find Angle Of Bank Needed For A Standard Rate Turn (Divide airspeed by 10 and add $1 / 2$ to answer, i.e., 100 divided by $10+5=15$ Degrees Bank.)
_(11) Turns Low Cruise Speed
_(12) Turns Normal Cruise Speed
\qquad (13) Turns High Cruise Speed
\qquad (14) Practice Turns With Inoperative Gyroscopic Attitude \& HDG. Indicators
(15) Practice Climbing And Descending Turns, With Level-Offs At Various Airspeeds, Full Panel
(16) Practice Climbing And Descending Turns Without Gyroscopic HDG. And Attitude Indicator
(17) Turns To Predetermined Headings (With a rollout lead of 1 degree for each 2 degrees of bank being held. Never exceed in bank number of degrees to be turned. Never exceed a standard rate turn.)
(18) Without Attitude Indicator, Change HDG. 30
$\overline{\text { Degrees (Use a standard rate turn.) }}$
(19) Practice Changing HDG. Less Than 15 Degrees
(20) Practice Turns To Various Headings With All Instruments \& Without Attitude Indicator
\qquad (21) Postflight
\qquad (22) Next Lesson Preview \qquad (23) Quiz 1

Notes:

Start
Total \qquad N
\qquad
\qquad (1) Preflight Discussion
\qquad (2) Ground Phase
\qquad (3) Instrument Takeoffs. Hold aircraft stationary with brakes and advance power to a setting that will provide partial rudder control. Advance throttle smoothly to obtain rudder effectiveness, then release brakes and apply full power. Heading indicator is primary for directional control. Climb-out is made at a constant airspeed.)
\qquad (4) Practice Instrument Takeoffs Without Hood
\qquad (5) Practice Instrument Takeoffs With Hood

Start			
End	N		
Total		\quad	Date_ $\quad 1$
:---			

Lesson \#8. RATE CLIMBS AND DESCENTS

\qquad (1) Preflight Discussion
(2) Instrument Takeoff
\qquad (3) Climb At A Definite Indicated Rate (From climb airspeed, advance power to establish climb at 500'/min. Simultaneously adjust pitch to maintain constant airspeed. Log power setting required for this.)
(4) Level Off From A Climb At A Definite Indicated Rate (Follow same procedure that was described for level-offs from constant airspeed climbs.)
(5) Enter A Descent At A Definite Indicated Rate (Adjust pitch attitude to maintain a constant airspeed. Log power setting required for this.)
(6) Level Off From A Descent At A Definite Indicated Rate (Follow he same procedure that was described for level-offs from constant airspeed descents.)
(7) Calibrating VSI To Establish Definite Absolute Rates (By establishing a climb or descent of 500'/min.
(8) Practice Calibrating VSI During Both Climbs And Descents
(9) Climbs At A Definite Absolute Rate (Establish climbing airspeed. As clock passes a cardinal point, enter climb using same technique that has been described for entry into a climb at a definite indicated rate. Use first 30 sec . to establish proper vertical speed and trim. Check clock and altimeter every 15 sec . thereafter for 125 feet of altitude change. Show student how to correct any errors.)
(10) Level-Offs From Climb At A Definite Absolute Rate (Follow same procedure that was described for level-off from a constant airspeed climb.)
(11) Postflight
_(12) Next Lesson Preview
Notes:

Start	N
End	
Total	Date_ $\quad 1$

Lesson \#9. CHANGE OF AIRSPEED. IN TURNS

\qquad (1) Preflight Discussion
\qquad (2) Instrument Takeoff
(3) Change From Normal To Low Cruise Airspeed.
(After Turn Is Established Altimeter is primary for pitch, turn needle is primary for bank. While airspeed is changing, MAP or TACH is primary for power. Trim as airspeed changes.)
(4) Change From Low To Normal Cruise After Turn Is Established (Same as above, except power must be overshot 3" to 5" (200-300 RPM), pitch is lowered to maintain altitude, bank is increased to maintain standard rate turn.)
\qquad (5) Change Airspeed. And Enter Turn Simultaneously

Is Established
(7) Practice Changing Airspeed. In Turns Entering Turn And Changing Airspeed. Simultaneously (With all available instruments, and without attitude and heading indicators.)
\qquad (8) Postflight, Lesson Preview

Start \qquad
End
Total \qquad N

Date_ /
Lesson \#10. CLIMBS AND DESCENTS TO PREDETERMINED ALTITUDES AND HEADINGS.
\qquad (1) Preflight Discussion
\qquad (2) Instrument Takeoff

Straight-And-Level Flight

(4) When Clock Second Hand Indicates A Cardinal Point Change Pitch, Bank And Power Simultaneously, And Enter A Standard Rate Climbing Turn
(5) Control Bank As In Timed Turns, Checking HDG. Every 15 Sec. After 1st 30 Seconds
(6) Control Pitch As In Rate Climbs, Checking

Altitude Every 15 Sec. After 1st 30 Seconds
(7) Roll Out On Correct HDG. And Level-Off On Correct Altitude Regardless Of Time
(8) Descend To A Predetermined Altitude And HDG.
\qquad (9) Practice without attitude and heading indicators.)
_(10) Postflight
\qquad (11) Next Lesson Preview

Start
End
\qquad
\qquad
Lesson \#11. VERTICAL S, S1 \& S2
\qquad (1) Preflight Discussion
\qquad (2) Instrument Takeoff
\qquad (3) Vertical S (From an exact altitude and climbing or descending airspeed., adjust power and pitch to enter a climb or descent. As Power is adjusted in entry, airspeed. is primary for pitch. As VSI approaches 500 FPM, VSI becomes primary for pitch and remains so until reversal of vertical direction is started. As VSI reaches 500 FPM airspeed. again becomes primary for power. As reversal of VSI is started, airspeed. becomes primary for pitch and remains so until VSI approaches desired rate of 500 FPM. Trim and Cross-Check are important.)
\qquad (4) Vertical S-1 (Enter in a climbing or descending turn.)
(5) Reverse Direction Of Turn With Each Return To Entry Altitude.
(6) VERTICAL S-2 (direction of turn is reversed with each reversal of vertical direction.)
(7) V. S, S1, and S-2 (With all instruments, \& without Al.
(8) Postflight, Lesson Preview

Start___	N
End	Date_ $\quad 1$
Total	

Lesson \#12. MAGNETIC COMPASS

(1) Preflight Discussion includes North Undershoot $=$ Latitude $+1 / 2$ the bank angle. South Overshoot $=$ Latitude $+1 / 2$ the bank angle.
(2) Review As Necessary
___ (3) Demonstrate Northerly Turning Error (Fly north long enough for compass to settle down, wings level. Enter a turn to west. compass immediately indicates a turn in opposite direction. Return to a north heading. Enter a turn to east. compass indicates a turn to west. Return to a north heading.)
(4) Enter A Very Shallow Banked Turn To West (Compass indicated momentarily that a straight course is being maintained. Wings must be level to avoid turning errors. Repeat demonstration in a shallow turn to east.)
\qquad (5) Enter A Steep Turn (compass lags excessively, and may swing completely around in opposite direction of turn.)
\qquad (6) Demonstrate Southerly Turning Error (Fly a south heading and let compass settle down. Enter a turn to west. compass indicates a much faster turn in same direction. Return to south heading. Enter a turn to east. compass indicates a much faster turn in same direction. Return to a south heading. Wings must be level to avoid compass turn errors.)
\qquad (7) Acceleration \& Deceleration Error With Power

Changes (Fly a heading of east. Increase airspeed in level flight. Compass indicates a turn toward north. Reduce airspeed in level flight. Compass indicates a turn toward south.)
(8) Acceleration \& Deceleration Error Constant Power (Fly a heading of east or west. At a constant power setting first lower, then raise nose.)
(9) Fly A HDG. Of West, And Repeat Above
$\overline{\text { Demonstration (magnitude of error depends on rate of }}$ acceleration or deceleration. To read compass accurately, airspeed must be constant. Acceleration and deceleration error are not present in constant airspeed climbs and descents.)
(10) Show That Acceleration And Deceleration Errors Are Not Present On North And South Headings
(11) Show That Turn Errors Are Not Present On East And West Headings
(12) Turns To Magnetic Compass Headings (Turn to a heading of north, using 15 to 18 degrees of bank. Lead heading an amount equal to latitude plus half angle of bank. Repeat same, turning to a heading of south (15 to 18 degrees of bank. Overshoot heading an amount equal to latitude minus half angle of bank.)
(13) From South, Then From North, Turn To A HDG. Of East (Lead heading approx. 5 degrees when turning from a heading of south to east, and approx. 10 degrees when turning from a heading of north to east.)
(14) Turn To A HDG. Of West, Using Procedure Given Above
(15) Show That Lag Or Lead Must Be Interpolated When Turning To Intermediate Headings
(16) Practice Making Turns To Magnetic Compass $\overline{\text { Headings Without HDG. Indicator, Then Without HDG. Indicator }}$ And Attitude Indicator
(17) Postflight \qquad (18) Next Lesson Preview

Start
End Total \qquad
N
\qquad
Lesson \#13. TIMED TURNS
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
(3) Calibration Of Turn Needle (With all instruments available, establish a standard rate turn as indicated by turn needle. As clock second hand passes a cardinal point, check heading indicator for a turn of 30 degrees each 10 seconds (no lag, since timing is started after turn is established). Make necessary changes in indicated rate (needle position) to produce a standard rate turn.)
\qquad (4) Calibrate Needle Both Right And Left
(5) Note Exact Deflection Of Turn Needle And Use $\overline{\text { Corrected }}$ Deflection (If any) For All Timed Turns
(6) Timed Turns With All Instruments Available (Enter $\overline{\text { a standard }}$ rate turn when clock second hand passes a cardinal point. first 30 second is used to establish turn properly. check heading indicator to see whether rate of turn is proper. It should indicate a turn of 90 degrees minus number of degrees lag for angle of bank used (LAG WILL BE APPROX. ONE-HALF DEGREE OF BANK.) Demonstrate how angle of bank is increased or decreased to compensate for any error. After first 30 seconds, heading indicator should be checked against clock every 15 seconds. Time is started when pressure is applied to roll into a turn and stopped when pressure is applied to roll out. With all instruments available, roll out on desired heading regardless of time.)
(7) Timed Turns Without HDG. Indicator And Attitude Indicator (Enter a standard rate turn using needle as primary bank instrument while in a turn. Turn for 30 seconds, holding a constant turn needle deflection. At end of 30 seconds, roll out of turn at same rate you made roll-in. When wings are level and turn needle is centered, magnetic compass should indicate a turn of 90 degrees. For small changes in heading use a half-standard-rate turn. (1/2 NEEDLE WIDTH ON 2 MIN. NEEDLE, OR 1 NEEDLE WIDTH ON 4 MINUTE NEEDLE.))
(8) Practice Making Timed Turns At Different $\overline{\text { Airspeeds }}$ (With all available instruments.)
(9) Without HDG. Indicator
(10) Without HDG. Indicator And Attitude Indicator

Start___	N
End	Date_ $\quad 1$
Total	

Lesson \#14. RECOVERY FROM UNUSUAL FLIGHT ATTITUDES
(1) Preflight Discussion Rules Airspeed Needle

Increasing:
Close Throttle.
Level Wings.
Increase Pitch.
Airspeed Needle Decreasing:
Full Throttle.
Decrease Pitch.
Level Wings.
\qquad (2) Review As Necessary
(3) Practice Recovery From Nose-Low Unusual $\overline{\text { Attitudes With All Available Instruments }}$
\qquad (4) Now Without Attitude And HDG. Indicator
(5) Practice Recovery From Nose-High Unusua Attitudes With All Available Instruments
\qquad (6) Without Attitude And HDG. Indicator
\qquad (7) Postflight
\qquad (8) Next Lesson Preview

NOTES:

Start
Total \qquad
N
\qquad

Lesson \#15. PATTERN "A"

(1) Preflight Discussion (purpose of this pattern is to further develop ability to control aircraft without deliberate thought. These patterns help prepare student for holding patterns and procedure turns. Initial practice should be on cardinal headings for simplicity.
(2) Review As Necessary
(3) Maneuver Should Be First Performed With All Available Instruments, Then On Partial Panel
(4) Demonstrate First Three Turns, Then Have Student Continue (Timing should start when clock is on a cardinal point, preferably 12 o'clock position.)
(5) Timing Is Consecutive In That Time For Each Leg Is Started When Control Pressure Is Applied To Recover From Preceding Turn
(6) After Recovery From Turns, Allow Sufficient Time For Compass To Stop Oscillating, Then Note HDG. And Correct If Necessary (An exception is 30 Sec . leg. If you note an error in heading here, compensate for it by lengthening or shortening time allotted for next turn.)
(7) Observe Turn Needle And Magnetic Compass Closely (To correct a heading, use a timed turn. For small heading changes use half-standard rate turns. Efficient CrossCheck is required during airspeed changes so that corrections may be applied immediately.)
(8) Perform Pattern Without Attitude And HDG.

Indicator
(9) Postflight
\qquad (10) Next Lesson Preview

NOTES:

Pattern "B"

Start
End
\qquad

Date_ /

Lesson \#16. PATTERN "B"

(1) Preflight Discussion (Pattern "B" like previous one, is to further develop pilot's ability to control aircraft without deliberate thought. These patterns help prepare student for holding patterns and procedure turns. Initial practice should be on cardinal headings for simplicity.
(2) Use All Available Instruments (Do not
demonstrate unless absolutely necessary.)
(3) Roll Out On Headings Regardless Of Time (When changing airspeed in turns, simultaneously change bank and power, also change pitch, if applicable.)
(4) Descending Final Turn Is Made At An Absolute

Rate
(5) Final Descent Is Made To A Minimum Altitude (As set by instructor, or until time expires, whichever comes first.)
(6) Emergency pull-up Is Made As A Normal
$\overline{\text { Go-Around }}$ Procedure, Climbing To Original Altitude
\qquad (7) Postflight. Quiz 2

STAGE 2 After Successful Completion.

Start	N	
End		
Total	Date /	1
STAGE II		
INSTRUMENT APPROACHES \& HOLDING		
Lesso VOR/	D TRAC	

\qquad (1) Preflight Discussion
\qquad (2) Review Attitude Instrument Flying As Necessary
\qquad (3) VOR Approach Procedures
\qquad (4) Approach Clearances
\qquad (5) Compare VOR and LOC Approach Procedures
(6) Tune And Correctly Identify Facility, Intercept Desired Radial
(7) Maintain Airspeed. Within 5 Kts., Altitudes Within 50' and Headings or Bearings Within 5 Degrees

(8) Apply Proper Corrections To Maintain Radial (less than full-scale deflection of CDI or within 10\% if RMI.)

\qquad (9) Determine Aircraft's Position Relative To Facility
(10) Recognize Receiver Or Facility Failure, And Report To ATC
_(11) Postflight
\qquad (12) Next Lesson Preview

Start
End
Total \qquad N

Date_ I

Lesson \#18. INTERCEPTING AND TRACKING DME ARCS

\qquad (1) Preflight Discussion
\qquad (2) Review Attitude Instrument Flying As Necessary
(3) DME ARC Approach Procedures
\qquad (4) Approach Clearances
\qquad (5) Compare VOR and LOC Approach Procedures
(6) Tune And Correctly Identify Facility, Intercept Desired ARC
(7) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 'and Headings or Bearings Within 5 Degrees
(8) Apply Proper Corrections To Maintain DME ARC (Within 1 NM)
(9) Recognize Receiver Or Facility Failure, And Report To ATC
\qquad (10) Postflight
(11) Next Lesson Preview
Start___
End
Total
Lesson \#19. INTERCEPTING AND TRACKING NDB BEARINGS
\qquad (1) Preflight Discussion
\qquad (2) Review Attitude Instrument Flying As Necessary
\qquad (3) Tune And Correctly Identify Facility

Facility
(4) Set Volume To Allow Constant Monitoring Of
\qquad (5) Determine Relative Bearing Of NDB Facility
_(6) Intercept A Specific Bearing To Of From NDB (Use appropriate intercept procedures.)
(7) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 'and Headings or Bearings Within 5 Degrees
\qquad (8) Determine Aircraft's Position Relative To Facility
\qquad (9) Recognize Receiver Or Facility Failure, And Reports Failure To ATC
\qquad (10) Postflight
\qquad (11) Next Lesson Preview

Start \qquad
Total \qquad

N

Date_ /
Lesson \#20. INTERCEPTING AND TRACKING THE ILS LOCALIZER
\qquad (1) Preflight Discussion
\qquad (2) Review Attitude Instrument Flying As Necessary
\qquad (3) ILS Approach Procedures
\qquad (4) Approach Clearances
\qquad (5) Compare VOR and LOC Sensitivity (Loc. is 4 X Greater.)
(6) Tune And Correctly Identify Facility, Intercept Desired Course
(7) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 'and Headings or Bearings Within 5 Degrees
(8) Apply Proper Corrections To Maintain Radial (less than full-scale deflection of CDI or within 10% if RMI.)
(9) Recognize Receiver Or Facility Failure, And $\overline{\text { Report To } A T C}$
(10) Postflight
(11) Next Lesson Preview

Start
End
Total \qquad

Lesson \#21. MISSED APPROACH PROCEDURES

Combine This Lesson With Approach Procedures and Holding Patterns. Practice to Proficiency.
\qquad (1) Preflight Discussion
___ (2) Initiate Missed Approach Promptly (apply power, establishing a climb attitude, and reduce drag in accordance with manufacturer's recommendations.)
(3) Report To ATC \& Comply With Published Or Alternate Missed Approach Procedure
(4) Advise ATC Anytime Aircraft Is Unable To Comply With A Clearance, Restriction, Or Climb Gradient
(5) Follow Appropriate Checklist Items Appropriate To Go-Around Procedure
(6) If Appropriate, Request Clearance To Alternate Airport, Clearance Limit, Or As Directed
(7) Maintain Recommended Airspeed. Within 5 Kts., Heading, Course Or Bearing Within 5 Degrees, and Altitude(s) Within 50'
(8) Postflight Lesson Preview

Start
End
Total \qquad N

Date_ /
Lesson \#22. VOR HOLDING PROCEDURES
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
(3) Comply With Departure, Enroute And Arrival $\overline{\text { Clearances }}$
(4) Change To Holding Speed When 3 Minutes Or Less From, But Prior To Arriving At Holding Fix
(5) Use An Entry Procedure That Ensures Aircraft $\overline{\text { Remains Within Holding Pattern Airspace }}$
\qquad (6) Comply With ATC Reporting Requirements
\qquad (7) Use Proper Timing Criteria
\qquad (8) Comply With Pattern Leg Lengths When A DME Distance Is Specified (If DME Equipped.)
\qquad (9) Use Proper Wind Correction, And Arrive Over Fix At A Specified Time
(10) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 ' and Headings, Bearings or Radials Within 5 Degrees
\qquad (11) Missed Approach Procedures
(12) Postflight Lesson Preview

Start
End
Total \qquad Date_ /

Lesson \#23. CIRCLING APPROACH PROCEDURE

\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
(3) Comply With Departure, Enroute and Arrival And $\overline{\text { Clearances }}$
(4) Use Sound Judgment And Knowledge Of Aircraft's Maneuvering Capabilities

By ATC

(5) Adhere To Restrictions And Instructions Issued
(6) Do Not Descend Below Circling Altitude Or Exceed Visibility Criteria Until In A Position From Which Descent To A Normal Landing Can Be Made

(7) Missed Approach Procedures From a Circling
Approach
(8) Postflight

\qquad (9) Next Lesson Preview

NOTES:

Start \qquad N
Date_ I
Lesson \#24. LANDING FROM A STRAIGHT-IN
OR CIRCLING APPROACH PROCEDURE
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
\qquad (3) Comply With Departure, Enroute and Arrival And Clearances
(4) Exhibit Knowledge Of Pilot's Responsibilities, Environmental, Operational And Meteorological Factors
(5) Transition At DH, MDA Or VDP To Visual Flight Condition
(6) Adhere To ATC Advisories (NOTAMS, wind $\overline{\text { shear, wake turbulence, runway surface, braking conditions, }}$ other operational considerations.)
(7) Complete Appropriate Checklist Items For $\overline{\text { Pre-Landing And Landing Phase }}$
(8) Maintain Positive Aircraft Control Throughout Complete Landing Maneuver
(9) Postflight
\qquad (10) Next Lesson Preview

Start \qquad N
Date_ /
Lesson \#25. NO-GYRO RADAR VECTORING AND APPROACH
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
\qquad (3) Comply With Departure, Enroute And Arrival Clearances
(4) Properly Set Communications \& Navigation
$\overline{\text { Equipment }}$
(5) Acknowledge All Headings, Altitudes, Altimeter

Settings
$\overline{\text { ATC }}$
(6) Comply With Controller's Instructions Or Query
(7) Make All Turns While Being Vectored At Standard Or Half- Standard Rate When Directed By Controller
(8) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 ' and Headings, Bearings or Radials Within 5 Degrees
\qquad (9) Postflight
\qquad (10) Next Lesson Preview

NOTES:

Start
N
Total \qquad Date_ I
Lesson \#26. VOR/VORTAC INSTRUMENT APPROACH PROCEDURE
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary

Appropriate To Phase Of Flight Or Approach Segment

(4) Use Proper Radio Communications Phraseology And Technique
(5) Comply With All And Clearances As Issued By $\overline{\text { ATC Or By Instructor }}$
(6) Advise ATC Anytime Aircraft Is Unable To Comply $\overline{\text { With A Clearance }}$
\qquad (7) Establish Appropriate Aircraft Configuration And Airspeed.
(8) Complete Aircraft Checklist Items Appropriate To Phase Of Flight
(9) Maintain Prior To Beginning Final Approach Segment, Altitudes Within 50 Feet, Headings Within 5 Degrees, And Airspeed. Within 5 Kts.
(10) Select, Tune, Identify And Confirm Operational $\overline{\text { Status Of Ground And Aircraft Navigational Equipment To Be }}$ Used For Approach Procedure
(11) Apply Necessary Adjustments To Published MDA And Visibility Criteria For Aircraft Approach Category When Required Such As:
FDC And Class II NOTAMS
Inoperative Aircraft And Ground Navigation Equipment Inoperative Visual Aids (Landing Environment)
National Weather Service Reporting Factors And Criteria
(12) Establish A Rate Of Descent That Will Ensure Arrival At MDA With Aircraft Continuously In A Position From Which Descent To A Landing Can Be Made At A Normal Rate Using Normal Maneuvers
(13) While On Final Approach Segment, Allow Less Than A full-scale Deflection Of CDI Or 5 Degrees In Case Of An RMI, And Maintain Airspeed. Within 5 Kts.
(14) Execute Missed Approach Procedure When Required Visual References For Intended Runway Are Not Distinctly Visible \& Identifiable At Missed Approach Point
(15) Execute A Normal Landing From A Straight-In Or Circling Approach When Instructed
(16) Postflight, Lesson Preview

Start
End
Total \qquad N

Date_ /

Lesson \#27. NDB HOLDING PROCEDURES

\qquad (1) Preflight Discussion
\qquad (2) Tune, Identify and Monitor
(3) Comply With Departure, Enroute And Arrival $\overline{\text { Clearances }}$
(4) Change To Holding Speed When 3 Minutes Or Less From, But Prior To Arriving At Holding Fix
(5) Use An Entry Procedure That Ensures Aircraft Remains Within Holding Pattern Airspace
\qquad (6) Comply With ATC Reporting Requirements
\qquad (7) Use Proper Timing Criteria
\qquad (8) Use Proper Wind Correction, And Arrive Over Fix At A Specified Time
(9) Maintain Airspeed. Within 5 Kts., Altitudes Within 50 and Headings, and Bearings Within 5 Degrees
\qquad (10) Postflight
(11) Next Lesson Preview
(12) Quiz 3

Start
Total \qquad

Lesson \#28. NDB INSTRUMENT APPROACH PROCEDURE
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
\qquad (3) Establish Two-way Communications With ATC As $\overline{\text { Appropriate To Phase Of Flight Or Approach Segment }}$

\qquad
 (4) Use Proper Radio Communications Phraseology

 And Technique\qquad (5) Comply With All Clearances As Issued By ATC Or Instructor
(6) Advise Anytime You Are Unable To Comply With A Clearance
(7) Establish Appropriate Aircraft Configuration \&

Airspeed.
(8) Complete Aircraft Checklist Items Appropriate To Phase Of Flight
(9) Maintain Prior To Beginning Final Approach Segment, Altitudes Within 50' HDG. Within 5 Degrees, Airspeed. Within 5 Kts.
(10) Select, Tune, Identify Confirm and Monitor Operational Status Of Ground And Aircraft Navigational Equipment To Be Used For Approach Procedure
(11) Apply Necessary Adjustments To Published MDA And Visibility Criteria For Aircraft Approach Category When Required Such As:
FDC And Class II NOTAMS
Inoperative Aircraft And Ground Navigation Equipment Inoperative Visual Aids (Landing Environment)
National Weather Service Reporting Factors And Criteria
(12) Establish A Rate Of Descent That Will Ensure Arrival At MDA With Aircraft Continuously In A Position From Which Descent To A Landing Can Be Made At A Normal Rate Using Normal Maneuvers
(13) Maintain, While On Final Approach Segment, A $\overline{\text { Deviation Of Not More Than } 5 \text { Degrees From Desired Bearing }}$
(14) Maintain Airspeed. Within 5 Kts. MDA, Within +50' -0' To Missed Approach Point
(15) Execute Missed Approach Procedure When Required Visual References For Intended Runway Are Not Distinctly Visible \& Identifiable At Missed Approach Point

Circling)
(16) Execute A Normal Landing (Straight-In Or
_(17) Postflight
(18) Next Lesson Preview

| Start | N |
| :--- | :--- | :--- |
| End | Date / / |

Lesson \#29. ILS/MLS INSTRUMENT APPROACH PROCEDURE
\qquad (1) Preflight Discussion
\qquad (2) Review As Necessary
\qquad (3) Air Traffic Control Clearances And
\qquad (4) Establish Two-way Communications With ATC As $\overline{\text { Appropriate }}$ To Phase Of Flight Or Approach Segment

\qquad
 (5) Use Proper Radio Communications Phraseology
 And Technique

(6) Comply With All Clearances As Issued By ATC Or Instructor
(7) Advise ATC Anytime Aircraft Is Unable To Comply With A Clearance
(8) Establish Appropriate Aircraft Configuration And Airspeed.
(9) Complete Aircraft Checklist Items Appropriate To phase Of Flight
(10) Maintain Prior To Beginning Final Approach Segment, Altitudes Within 50' HDG. Within 5 Degrees, Airspeed. Within 5 Kts.
(11) Select, Tune, Identify And Confirm Operational Status Of Ground And Aircraft Navigational Equipment To Be Used For Approach Procedure
(12) Apply Necessary Adjustments To Published DH And Visibility Criteria For Aircraft Approach Category When Required Such As: FDC And Class II NOTAMS Inoperative Aircraft And Ground Navigation Equipment Inoperative Visual Aids (Landing Environment) National Weather Service Reporting Factors And Criteria
(13) Maintain Desired Airspeed. Within 5 Kts.
(14) Avoid Descent Below DH Before Initiating Missed $\overline{\text { Approach Procedure Or Transitioning To A Normal Landing }}$ Approach
(15) Immediately Execute Missed Approach Procedure When At DH, Required Visual References For Intended Runway Are Not Distinctly Visible And Identifiable
(16) Transition To A Normal Landing Approach When Aircraft Is Continuously In A Position From Which A Descent To A Landing Can Be Made At A Normal Rate Of Descent Using Normal Maneuvers
(17) Postflight, Lesson Preview

Start \qquad
End \qquad N

Date_ /
Lesson \#30. INTERSECTION HOLDING PROCEDURES
\qquad (1) Preflight Discussion
_(2) Tune, Identify, and Monitor the Identifier, if Necessary
(3) Comply With Departure, Enroute And Arrival Clearances
(4) Change To Holding Speed When 3 Minutes Or Less From, But Prior To Arriving At Holding Fix
(5) Use An Entry Procedure That Ensures Aircraft Remains Within Holding Pattern Airspace
\qquad (6) Comply With ATC Reporting Requirements
\qquad (7) Use Proper Timing Criteria
(8) Comply With Pattern Leg Lengths When A DME $\overline{\text { Distance Is Specified (If DME Equipped.) }}$
(9) Use Proper Wind Correction, And Arrive Over Fix $\overline{\text { At A Specified Time }}$
(10) Maintain Airspeed. Within 5 Kts., Altitudes Within $\overline{50}$ ' and Headings, Bearings or Radials Within 5 Degrees
\qquad (11) Postflight Lesson Preview
\qquad (12) Quiz 4 Stage III Begins.

Start \qquad

N

\qquad
Total \qquad

STAGE III
IFR CROSS-COUNTRY
Lesson \#31. IFR SHORT CROSS-COUNTRY
\qquad (1) Preflight Discussion alternate airport is required.
(3) Airplane Systems Related To IFR Operations. Windscreen, airframe, propeller, intake, fuel system, the Pitot-static system and leading edge devices.
(4) IFR Departure, Enroute \& Arrival Clearances and

Procedures
\qquad (5) Calculating ETAs \& ETE
\qquad (6) Enroute Navigation On Victor Airways
\qquad (7) ILS Approach
(8) VOR Approach
\qquad (9) NDB Approach
\qquad (10) Other Approach
\qquad (11) Missed Approach Procedures
\qquad (12) Postflight
(13) Preview of Next Lesson

Start
End
Total \qquad
\qquad
Lesson \#32. PAR APPROACH (Combine with Cross-Country GRF- Gray Army Airfield, near Tacoma, WA. Military airfield, prior permision rquired for landing, so a low-approach only is recommended.)
\qquad (1) Preflight Discussion
(2) Student Reads Back All Headings And Altitudes Given And Acknowledges All Other Transmissions Except When Instructed Otherwise By Final Controller
(3) Perform Pre-Landing Check and Reduce Airspeed. To Approach Speed And Set Flaps To Approach Setting (Maintain altitude and heading while changing altitude and flap setting.)
(4) Make All HDG. Changes At Standard Rate (Except during no-gyro approaches in final approach, when half-standard rate turns should be used.)
(5) Enter A 500 FPM Descent When So Instructed (If above or below glide path, make a pitch correction and monitor airspeed for need of power change. When changing headings, do not exceed in bank angle number of degrees to be turned.)
\qquad (6) Practice PAR Approaches With Full And Partial Panel
\qquad (7) Postflight

Start___	N
End	Date_ $\quad 1$
Total	

Lesson \#33. IFR CROSS-COUNTRY
\qquad (1) Preflight Discussion
\qquad (2) Obtaining Weather Information.
(3) Airplane Systems and Equipment Related To IFR $\overline{\text { Operations. }}$
(4) IFR Departure, Enroute \& Arrival Clearances and $\overline{\text { Procedures }}$
\qquad (5) Calculating ETAs \& ETE
\qquad (6) Enroute Navigation On Victor Airways
\qquad (7) ILS Approach
___ (8) VOR Approach
\qquad (9) NDB Approach
(10) Other Approach
(11) Missed Approach Procedures
(12) Postflight
(13) Preview of Next Lesson

Start
End
Total \qquad

N

Date_ /

Lesson \#34. IFR LONG CROSS-COUNTRY
\qquad (1) Preflight Discussion
\qquad (2) Obtaining Weather Information.
(3) Airplane Systems and Equipment Related To IFR $\overline{\text { Operations }}$
(4) IFR Departure, Enroute \& Arrival Clearances and $\overline{\text { Procedures }}$
\qquad (5) Calculating ETAs \& ETE
\qquad (6) Enroute Navigation On Victor Airways
\qquad (7) ILS Approach
__ (8) VOR Approach
\qquad (9) NDB Approach
(10) Other Approach
(11) Missed Approach Procedures
(12) Postflight
(13) Preview of Next Lesson

Start___	N
End	Date_ $\quad 1$
Total	

Lesson \#35. EMERGENCY PROCEDURES

\qquad (1) Preflight Discussion
\qquad (2) Obtaining Weather Information.
\qquad (3) Airplane Systems Related To IFR Operations.

Equipment

\qquad (5) Airplane Systems Related To IFR Operations $\overline{\text { Procedures }}$
(6) IFR Departure, Enroute \& Arrival Clearances and
\qquad (7) Calculating ETAs \& ETE
\qquad (8) VOR Approach
(9) AFD Approach
(10) ILS Approach
(11) Postflight
(12) Next Lesson Preview

STAGE IV
REVIEW LESSONS
Name \qquad Date \qquad Hours \qquad

Start \qquad Off \qquad On

In \qquad
\Rightarrow Preflight Discussion
\Rightarrow IFR Flight Plan, Clearances or VFR Wx \& IFR Procedures Type/ID/Model/Tas./Dprt./Etd./ALT/Route/Dest./Ete./ Remarks/FOB/Alternate/Name/Phone/Base/SOB/Color
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Normal / Max Performance / Crosswind Takeoff
(Heading +-5 degrees, Airspeed +-5 Kts.)
\Rightarrow Engine Failure During Takeoff Before Vmc
(Simulated \& Calculated 50 percent below Vmc)
\Rightarrow Engine Failure After Lift-Off (Simulated Vy, >400AGL Vx+5 then Vy HDG. 10° ASPD 5Kt.
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Unusual Attitude Recovery
(Airspeed Increasing = Power, Level Wings, Raise Pitch; Airspeed Decreasing = Power, Lower Pitch, Level Wings.)
\Rightarrow Maneuvering During Slow Flight (Alt+-100' Hdg. $+-10^{\circ}$ Aspd. +10 -0 Bank +-10․)
\Rightarrow Holding Patterns
\Rightarrow Stalls (At least one while turning in 20° Max Bank $+-10^{\circ}$)
\Rightarrow Approach: (<3/4 Scale Deflection) (Airspeed +-10 Kts. Altitude $+-100^{\prime}$ Heading $+-10^{\circ}$)
\qquad ILS \qquad LOC \qquad BC \qquad COUPLED
\qquad WAAS \qquad RNAV \qquad VISUAL
\qquad CIRCLE \qquad LANDINGS \qquad NIGHT
\Rightarrow Low Approach (Missed Approach) (Heading +-100․ Altitude +100' Airspeed Vx or Vy +10-5 Kts.)
\Rightarrow Normal or Crosswind Landing (1.3Vso $+10-5 \mathrm{Kts}$. with wind/gust factor applied, TD<=400')
\Rightarrow Landing from a Circling Approach (Heading +-5 ${ }^{\circ}$ Altitude +100'-0' Airspeed +-5 Kts.)
\Rightarrow Short Field Approach and Landing (1.3Vso +10-5 Kts. with wind/gust factor applied, TD<=200')
\Rightarrow Emergency Procedures
\Rightarrow Other (specify) \qquad
\Rightarrow Post Flight

STAGE IV
REVIEW LESSONS
Name \qquad Date \qquad Hours \qquad

Start \qquad Off \qquad On

In \qquad
\Rightarrow Preflight Discussion
\Rightarrow IFR Flight Plan, Clearances or VFR Wx \& IFR Procedures Type/ID/Model/Tas./Dprt./Etd./ALT/Route/Dest./Ete./ Remarks/FOB/Alternate/Name/Phone/Base/SOB/Color
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Normal / Max Performance / Crosswind Takeoff
(Heading +-5 degrees, Airspeed +-5 Kts.)
\Rightarrow Engine Failure During Takeoff Before Vmc
(Simulated \& Calculated 50 percent below Vmc)
\Rightarrow Engine Failure After Lift-Off (Simulated Vy, >400AGL Vx+5 then Vy HDG. 10° ASPD 5Kt.
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Unusual Attitude Recovery
(Airspeed Increasing = Power, Level Wings, Raise Pitch; Airspeed Decreasing = Power, Lower Pitch, Level Wings.)
\Rightarrow Maneuvering During Slow Flight (Alt+-100' Hdg. $+-10^{\circ}$ Aspd. +10 -0 Bank +-10․)
\Rightarrow Holding Patterns
\Rightarrow Stalls (At least one while turning in 20° Max Bank $+-10^{\circ}$)
\Rightarrow Approach: ($<3 / 4$ Scale Deflection) (Airspeed +-10 Kts. Altitude $+-100^{\prime}$ Heading $+-10^{\circ}$)
\qquad ILS \qquad LOC \qquad BC \qquad COUPLED
\qquad WAAS \qquad RNAV \qquad VISUAL
\qquad CIRCLE \qquad LANDINGS \qquad NIGHT
\Rightarrow Low Approach (Missed Approach) (Heading +-100․ Altitude +100' Airspeed Vx or Vy +10-5 Kts.)
\Rightarrow Normal or Crosswind Landing (1.3Vso $+10-5 \mathrm{Kts}$. with wind/gust factor applied, TD<=400')
\Rightarrow Landing from a Circling Approach (Heading +-5 ${ }^{\circ}$ Altitude +100'-0' Airspeed +-5 Kts.)
\Rightarrow Short Field Approach and Landing (1.3Vso +10-5 Kts. with wind/gust factor applied, TD<=200')
\Rightarrow Emergency Procedures
\Rightarrow Other (specify) \qquad
\Rightarrow Post Flight

STAGE IV
REVIEW LESSONS
Name \qquad Date \qquad Hours \qquad

Start \qquad Off \qquad On

In \qquad
\Rightarrow Preflight Discussion
\Rightarrow IFR Flight Plan, Clearances or VFR Wx \& IFR Procedures Type/ID/Model/Tas./Dprt./Etd./ALT/Route/Dest./Ete./ Remarks/FOB/Alternate/Name/Phone/Base/SOB/Color
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Normal / Max Performance / Crosswind Takeoff
(Heading +-5 degrees, Airspeed +-5 Kts.)
\Rightarrow Engine Failure During Takeoff Before Vmc
(Simulated \& Calculated 50 percent below Vmc)
\Rightarrow Engine Failure After Lift-Off (Simulated Vy, >400AGL Vx+5 then Vy HDG. 10° ASPD 5Kt.
\Rightarrow Instrument Departure (Begin Takeoff Visually, Hood or ViewLimiting at 50' AGL)
\Rightarrow Unusual Attitude Recovery
(Airspeed Increasing = Power, Level Wings, Raise Pitch; Airspeed Decreasing = Power, Lower Pitch, Level Wings.)
\Rightarrow Maneuvering During Slow Flight (Alt+-100' Hdg. $+-10^{\circ}$ Aspd. +10 -0 Bank +-10․)
\Rightarrow Holding Patterns
\Rightarrow Stalls (At least one while turning in 20° Max Bank $+-10^{\circ}$)
\Rightarrow Approach: (<3/4 Scale Deflection) (Airspeed +-10 Kts. Altitude $+-100^{\prime}$ Heading $+-10^{\circ}$)
\qquad ILS \qquad LOC \qquad BC \qquad COUPLED
\qquad WAAS \qquad RNAV \qquad VISUAL
\qquad CIRCLE \qquad LANDINGS \qquad NIGHT
\Rightarrow Low Approach (Missed Approach) (Heading +-100․ Altitude +100' Airspeed Vx or Vy +10-5 Kts.)
\Rightarrow Normal or Crosswind Landing (1.3Vso $+10-5 \mathrm{Kts}$. with wind/gust factor applied, TD<=400')
\Rightarrow Landing from a Circling Approach (Heading +-5 ${ }^{\circ}$ Altitude +100'-0' Airspeed +-5 Kts.)
\Rightarrow Short Field Approach and Landing (1.3Vso +10-5 Kts. with wind/gust factor applied, TD<=200')
\Rightarrow Emergency Procedures
\Rightarrow Other (specify) \qquad
\Rightarrow Post Flight

QUIZ I-1

Preparation for Instrument Approaches

Student's Name Date

Use additional sheets or reverse side to answer these questions.

1. Name the four segments of a typical instrument approach, and the purpose of each segment.
2. What does the phrase "Cleared for the approach" mean?
3. What do the letters in the triangles "T" and "A" on the (NOS) approach chart mean?
4. Where is the MAP in a precision and non-precision approach?
5. Where are 4 different types of marker beacon
transmitters located? What are they referred to as?
6. At what point during a circling approach may you descend below the MDA?
7. What determines aircraft approach category?
8. What are the difference between Contact and Visual Approaches?
9. What type of course reversal is authorized if a teardrop or holding pattern reversal is shown?
10. What is the meaning of a Cruise Clearance?
11. Is it permissible to land when the visibility is below minimums, if you have the runway environment in sight?
12. List ten elements that comprise the Runway Environment. (FAR 91.175)

QUIZ I-2

Instrument Procedures

Instructor's Name

Student's Name
Date

1. Name nine additional pieces of equipment or instruments (beyond those necessary for VFR day \& night flights) which are necessary for IFR:
2. How is the missed approach started if you loose visual contact during a circling approach?
3. During a non-precision approach, what guidelines should you follow during your descent from the FAF to the MAP?
4. What are the rules pertaining to the operation of aircraft under IFR in icing conditions. (FAR 91.527)

What are the rules pertaining to lost communications while IFR, regarding:
5. Route;
6. Altitude;
7. Leave Clearance Limit (fix from which approach begins;)
8. Leave Clearance Limit (not a fix from which approach begins;)
9. Which items of an ILS have authorized substitutes? What are the substitute items?

When should you begin the final descent to the MDA during an ASR or PAR approach?

Air Traffic IFR Procedures

Student's Name

Date

1. Compare and contrast Visual Approaches with Contact Approaches. Is 91.155 compliance required for Visual Approaches?
2. If one or more approach components are inoperative, how do you determine the adjustments required in approach minimums?
3. List the items in a typical IFR departure clearance, in the normal sequence in which they are given.
4. What reports to ATC are you required to make in a radar environment? (91.183)
5. What reports to ATC are you required to make in a nonradar environment?
6. On a direct route segment, what points are considered to be compulsory reporting points?
7. When may you cancel IFR?
8. What procedure should you follow if you are unable to contact ATC on an assigned frequency?
9. What types of weather briefings should you request, and what are the circumstances under which they should be requested?
10. With an approach plate, discuss your actions and ATC communications during all phases of the instrument approach.

QUIZ I-4

Instrument Cross-Country \& Emergency Procedures

Student's Name

Date

Use additional sheets of paper to answer these questions.

1. Discuss three situations where you would consider the necessity for an alternate airport even when the forecast weather conditions of the 1-2-3 rule (FAR 91.167) would technically relieve you from the requirement to file one.
2. What's the relationship between the side of the aircraft (left or right) and the location of VOR stations (left or right of aircraft) with regard to radial passage?
3. What is the indication of the course indicator (TO, FROM, or OFF) when using a LOCALIZER front course? LOC $B C$?
4. What is the procedure for engine failure while in IMC ?
5. What would your actions be during an IMC flight at night, with an inoperative alternator?
6. If you encounter airframe icing that cannot be controlled by the use of anti-icing and de-icing equipment, what should you do?
7. What is the importance of airspeed during a circle-to-land procedure?
8. What criteria would you use during an instrument CrossCountry flight for planning your descent?
9. What action would you take during an ILS approach if you noticed the GS flag on your CDI indicator?
10. Why should you disregard all glide slope indications during a back course approach?
11. What is the approximate number of degrees from the center of the LOCALIZER course during a full-scale deflection of the LOC needle?
12. (Special extra-credit question) What are the differences between an LDA and a SDF course?
