Distance to Descend: Take the altitude to lose (in thousands) and multiply by 3. Add 1 mile for every 10 knots of airspeed reduction. Ex. You're flying at FL410 at 250 KIAS. You want to descend to 5,000 MSL and be at 200 KIAS. 41,000 ? 5000 = 36,000 ft. to lose. 36 * 3 = 108 A 50 knt. speed reduction = 5 miles. 108 + 5 = 113 miles out. How to Maintain a 3° Glide Slope Descent Rate: Multiply your groundspeed (or indicated airspeed) by 5. Ex. Your groundspeed reads 320 KIAS. 320 * 5 = 1,600 feet per minute. Or, to make it "pilot proof": Add a zero to your groundspeed, and divide by two. Anyone can divide by two. GS (or IAS) reads 320 KIAS 320 becomes 3200. 3,200 / 2 = 1,600 FPM Determine Your Rate of Descent on a Non precision Approach: Use this formula: Altitude to lose, divided by the distance to lose it in. This will equal the feet per nautical mile (FNM). Multiply the FNM by your groundspeed in minutes. This will equal the descent rate to maintain. Ex. Refer to the NDB or GPS approach for Runway 01 R at Wichita, KS. Altitude to lose = 980 feet. (2,700 LOM to 1,720 MDA) 980 / 4.1 = 239 FNM A 130 GS equals 2.2 NM per Minute 239 * 2.2 = 526 fpm. (Be a non?comformist, call it 500 fpm) Suggestion. Calculate a VDP if not depicted. Plan your descent rate to the VDP. If you don't see the runway by then, you're roh bably gonna go missed. This is almost like flying an ILS! How to Calculate a Visual Descent Point (VDP) With NO Distance Information: On a non precision approach, take your height above touchdown (HAT), take away the last number, and subtract that number from your time. Ex. Refer to the NDB or GPS approach for Runway 01 R at Wichita, KS. The HAT is 399 ft. Take away the last number leaving 39 (You can live on the edge and call it 40) Subtract 39 (or 40) from 1:45. (140 GS time) VDP = 1:06 (1:05) How to Calculate a Visual Descent Point (VDP) With Distance Information: Take the HAT and divide it by 300. (314 to be exact) Then, subtract that number from the FAF to the MAP distance. (Along Track Distance) Ex. Refer to the VOR or GPS approach for Runway 14 at Wichita, KS. HAT = 427 ft. 427 / 300 = 1.4 (427 / 314 = 1.359 for you technocrats) 8.6 (Distance from ICT to MAP) ? 1.4 = 7.2 miles VDP is 7.2 miles from the FAFNOR. OR 1.4 miles from the MAP using GPS. Angle of Lead on a DME Arc: Take 1 % of your groundspeed (GS), and subtract it from your arcing distance. Ex. Refer to the ILS approach for Runway 13 at Hutchinson, KS. The arc is 16 miles. Say your GS is 200 KIAS. (Go ahead, say it!) 1%of200is2. 16 ? 2 = 14 Start your turn at 14 miles. A little wind correction is always considered good airmanship! Determine Your Groundspeed: Note the distance traveled in 36 seconds. 36 seconds = 1 % of one hour. (3,600 seconds) Ex. Distance traveled in 36 secs. is 3.2 miles. Your GS is 320 kts. Viola! What could be easier? Speed Tips: Mach 0.1 = 1 Mile/Min. Mach 0.8 = 8 Miles/Min. Etc. 1 in 60 Rule: At 60 miles, 1 degree will equal 1 NM. At 20 miles out, 1 degree will equal 1/3 NM. Ex. You are at 25,000 ft. There is a level 5 thunderstorm 80 miles in front of you. You tilt up (radar) 1.5 degrees and the cell disappears. Approximately how high is the cell? At 80 miles, 1.5 degree of tilt equals 2 miles. At 6,076 (6,000) ft per NM, that equals 12,152 ft. (2 * 6,076) Present altitude of 25,000 + 12,152 = 37,152 ft. The cell is approximately 37,000 ft. high. Wind Correction on Final: Take the angle between the wind and the runway. Drop the zero. Move the decimal over one place. Now, add .2 to that number. Let's call that number "S". "S" is our factor number. Multiply the wind speed by our factor of "S". This will equal the Approximate Cross Wind Component (CWC). Now, take the CWC and divide it by two. That is your Approximate Wind Correction Angle on final! I know, way too cool! Ex. Wind is 270° a 10 knts. Runway in use is 21. Angle between the wind and runway is 60. Drop the zero and move the decimal point to get .6. .6 + .2 = .8 .8 is our "factor". .8 * 10 knots = 8. We have an 8 degree Cross Wind Component. 8 / 2 = 4. Hold a 4 degree wind correction angle. (right).